Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 595(7868): 565-571, 2021 07.
Article in English | MEDLINE | ID: covidwho-1275939

ABSTRACT

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Subject(s)
Astrocytes/pathology , Brain/pathology , COVID-19/diagnosis , COVID-19/pathology , Choroid Plexus/pathology , Microglia/pathology , Neurons/pathology , Aged , Aged, 80 and over , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/genetics , COVID-19/physiopathology , Cell Nucleus/genetics , Choroid Plexus/metabolism , Choroid Plexus/physiopathology , Choroid Plexus/virology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome , Virus Replication
2.
Stem Cell Reports ; 16(5): 1156-1164, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225409

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.


Subject(s)
COVID-19/pathology , Choroid Plexus/pathology , Human Embryonic Stem Cells/cytology , Neuroglia/virology , Organoids/innervation , Organoids/pathology , Cells, Cultured , Choroid Plexus/cytology , Choroid Plexus/virology , Humans , Neuroglia/pathology , Neurons/virology , Organoids/cytology , SARS-CoV-2/pathogenicity
4.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-857180

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Subject(s)
Blood-Brain Barrier/virology , Choroid Plexus/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Models, Biological , Organoids/virology , Vero Cells , Viral Tropism , Virus Internalization
5.
Cell Stem Cell ; 27(6): 937-950.e9, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-779663

ABSTRACT

Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.


Subject(s)
Choroid Plexus/virology , Neural Stem Cells/virology , Organoids/virology , Pluripotent Stem Cells/virology , SARS-CoV-2/physiology , Viral Tropism , Animals , Astrocytes/virology , Brain/cytology , Brain/virology , COVID-19/genetics , COVID-19/virology , Cells, Cultured , Gene Expression Regulation , Humans , Neurons/virology
SELECTION OF CITATIONS
SEARCH DETAIL